Ai tuning guide

Fine-Tuning Options for Major AI Models (2024)

Fine-tuning allows you to adapt pre-trained AI models to specific tasks (e.g., legal analysis, customer support, coding). Below is a comparison of fine-tuning capabilities across leading models:


1. OpenAI (ChatGPT / GPT-4)

Fine-Tuning Options:

How It Works:

  1. Upload dataset (JSONL format with prompt-completion pairs).

  2. Run fine-tuning job (OpenAI handles training).

  3. Deploy custom model via API.

Pros & Cons:

✅ Easy to use (managed by OpenAI)
✅ Good for domain-specific chatbots (e.g., medical, legal)
❌ Expensive (~0.008−0.0080.12 per 1K tokens)
❌ No fine-tuning for GPT-4 (only GPT-3.5)


2. DeepSeek-V3

Fine-Tuning Options:

How It Works:

  1. Download model weights (if open version available).

  2. Fine-tune with PyTorch/Transformers (using LoRA or full training).

  3. Deploy on own infrastructure (or cloud like AWS).

Pros & Cons:

✅ Free & open-weight option (unlike GPT-4)
✅ Strong coding/math capabilities (good for technical tasks)
❌ Requires ML expertise (not a managed service)


3. Google Gemini 1.5

Fine-Tuning Options:

How It Works:

  1. Upload dataset to Google Cloud.

  2. Run tuning job via Vertex AI.

  3. Deploy tuned model on GCP.

Pros & Cons:

✅ Integrates with Google Cloud (good for enterprises)
✅ Supports multimodal tuning (images + text)
❌ Limited availability (still in preview)
❌ Expensive compared to open models


4. Claude 3 (Anthropic)

Fine-Tuning Options:

Pros & Cons:

✅ Best safety controls (good for sensitive applications)
❌ No true fine-tuning (unlike OpenAI/Gemini)


5. Meta (Llama 3)

Fine-Tuning Options:

How It Works:

  1. Download Llama 3 weights (requires Meta approval).

  2. Fine-tune with PyTorch + FSDP/RLHF.

  3. Deploy via vLLM, TensorRT-LLM, etc.

Pros & Cons:

✅ Fully open-weight (best for research)
✅ Cost-effective (run on your own hardware)
❌ Weaker out-of-the-box than GPT-4
❌ Requires ML engineering skills


6. Qwen (Alibaba)

**Fine-Tuning Options:

Pros & Cons:

✅ Strong Chinese/English bilingual support
✅ Apache 2.0 license (commercial use allowed)
❌ Less community support than Llama


Comparison Table: Fine-Tuning Capabilities

ModelFine-Tuning Available?MethodCostBest For
GPT-4 ❌ No (only GPT-3.5) OpenAI API $$$$ Enterprises needing quick tuning
DeepSeek-V3 ✅ Yes (self-hosted) LoRA / Full FT Free-$ Developers wanting open models
Gemini 1.5 ✅ (Vertex AI preview) Adapter-based $$$ Google Cloud users
Claude 3 ❌ No (prompt-only) N/A - Safety-critical apps
Llama 3 ✅ Yes (full/LoRA) Self-hosted Free-$ Researchers, startups
Qwen ✅ Yes (open-weight) LoRA / Full FT Free-$ Chinese NLP tasks

Which One Should You Choose?


Try stackboard